首页 > 范文 > 报告范文

证明不等式的三种方法 证明不等式方法的开题报告优质(四篇)

证明不等式的三种方法 证明不等式方法的开题报告优质(四篇)



“报告”使用范围很广,按照上级部署或工作计划,每完成一项任务,一般都要向上级写报告,反映工作中的基本情况、工作中取得的经验教训、存在的问题以及今后工作设想等,以取得上级领导部门的指导。那么报告应该怎么制定才合适呢?下面是小编帮大家整理的最新报告范文,仅供参考,希望能够帮助到大家。

证明不等式的三种方法 证明不等式方法的开题报告篇一

(二)一、知识回顾

1、反证法:从否定结论出发,经过逻辑推理,导出矛盾,从而肯定原结论的正确;

2、放缩法:欲证ab,可通过适当放大或缩小,借助一个或多个中间量使得,常用的放缩方式: bb1,b1b2...a(或aa1,a1a2...b)舍去或加上一些项;

12nnn1;12nn1n;111

1;22nn(n1)nn(n1)

3、换元法:三角换元、代数换元;

4、判别式法

二、基本训练:

1、实数a、b、c不全为零的条件为()

a)a、b、c全不为零

b)a、b、c中至多只有一个为零 c)a、b、c只有一个为零

d)a、b、c中至少有一个不为零

2、已知a、b、c、dr,sabcd,则有()

abcabdcdacdba)0sb)1s2

c)2s

3d)3s4

3、为已知x2y24,则2x3y的取值范围是________。

4、设x0、y0,axyxy,b,则a、b大小关系为________。

1xy1x1y5、实数xxy,则x的取值范围是________。y13

3三、例题分析:

1、x>0,y>0,求证:xy(xy)

2、函数f(x)1x2(ab),求证:|f(a)f(b)||ab|

3、已知:a2b21,x2y21,求证:1axby1(三角换元法)

4、求证:1x11(判别式法)

x2x1322

3例

5、若a,b,c都是小于1的正数,求证:(1a)b,(1b)c,(1c)a不可能同时大于

6、求证:1

7、设二次函数f(x)ax2bxc(a、b、cr且a0),若函数yf(x)的图象与直线yx和yx均无公共点。

1.4(反证法)

1112(nn)(放缩法)22223n(1)求证:4acb21

(2)求证:对于一切实数x恒有|ax2bxc|

四、课堂小结:

1、凡是“至少”、“唯一”或含有否定词的命题适宜用反证法.2、换元法(主要指三角代换法)多用于条件不等式的证明,此法若运用恰当,可沟通三角与代数的联系,将复杂的代数问题转化成简单的三角问题.3、含有两上字母的不等式,若可化成一边为零,而另一边是关于某字母的二次式时,这时可考虑判别式法,并注意根的取值范围和题目的限制条件.4、有些不等式若恰当地运用放缩法可以很快得证,放缩时要看准目标,做到有的放矢,注意放缩适度.五、同步练习不等式证明方法

(二)1、若x2xyy21且x、yr,则nx2y2的取值范围是()4|a|a)0n

1b)2nc)nd)2n2 32、已知a、br,则下列各式中成立的是()

a)acosbsin22ab

b)acosbsin22ab

c)cos2lgasin2lgblg(ab)

d)cos2lgasin2lgblga(b)

3、设,y∈r,且x2+y2=4,则a)2-

24、若f(n)=

2xy的最大值为()

xy2b)2+2 c)-2 d)4 3n21-n,g(n)=n-n21,φ(n)=

1,则f(n),g(n),ф(n)的大小顺序为2n____________.5、设a,b是两个实数,给出下列条件:①a+b>1; ②a+b=2;③a+b>2;④a2+b2>2;⑤ab>1,其中能推出:“a、b中至少有一个实数大于1”的条件是____________.6、a、b、c∈r-,a≠b,求证:|ab|a2abb2a2b

2111 abbcac(提示:换元法,令a-b=m∈r+,b-c=n∈r+)

111112221

8、若nn,且n2,求证:2n123n7、a>b>c,求证:

|f(2)|,|f(3)|中至少有一个不少于

9、已知f(x)x2pxq,求证:|f(1)|,1。2

答案:dcb

4、g(n)>ф(n)> f(n)

5、③

证明不等式的三种方法 证明不等式方法的开题报告篇二

数学系数学与应用数学专业2009级年论文(设计)

不等式的一些证明方法

[摘要]:不等式是数学中非常重要的内容,不等式的证明是学习中的重点和难点,本文除总结不等式的常规证明方法外,给出了不等式相关的证明方法在具体实例中的应用.[关键词] 不等式;证明;方法; 应用

不等式在数学中占重要地位,由于其本身的完美性及证明的困难性,使不等式成为各类考试中的热点试题,证明不等式的途径是对原不等式作代数变形,在初等数学中常用的方法有放缩法、代换法、归纳法、反证法等等.因而涉及不等式的问题很广泛而且处理方法很灵活,故本文对不等式的证明方法进行一些探讨总结.一、中学中有关不等式的证明方法 1.1中学课本中的四种证明方法 1.1.1理清不等式的证明方法

(1)比较法:证明不等式的基本方法,适应面宽.①相减比较法—欲证ab,则证ab0.②相除比较法—欲证a>b(a>0,b>0),则证>1.(2)综合法:利用平均不等式、二次方程根的判别式、二项式定理、数列求和等等。此方法灵活性大,需反复练习.(3)分析法:当综合法较困难或行不通时,可考虑此法,但不宜到处乱用.第1页(共13页)

ab

数学系数学与应用数学专业2009级年论文(设计)(4)数学归纳法:凡与自然数n有关的不等式,可考虑此法,但有时使用起来比较困难,应与前面几种方法配合应用.1.1.2选择典型范例,探求解题途径

例1.1.1 求证 12x42x3x2

分析 用相减比较法证明ab0.一般应将ab变形为[f(x)]

2、(f(x)g(x),其中f(x),g(x)同号),或变形为多个因子的[f(x)]2[g(x)]

2、乘积、平方式.本题可化为两个完全平方式的和或化为一个完全平方式与一个正因式的积.证: 2x42x3x212x3(x1)(x1)(x1)

(x1)(2x3x1)(x1)(2x32xx1)

132(x1)2[(x)2]

442x42x3x210

当xr时,即 12x42x3x2

例1.1.2 证明 n(n1)n1....(n1).分析 题中含n,但此题用数学归纳法不易证明,通过变形后可采用平均不等式来证.11111(11)(1)(1)23n2n nn34n12n>n23.4...n1=nn1(再变形)=2323nn11111n1....(11)(1)....(1)23n2n

证:

nnn11n12131n第2页(共13页)

数学系数学与应用数学专业2009级年论文(设计)

2 1n34n1....23nn234....n1nn1

n23n131n所以 n(n1)n1....

例1.1.3 求证:

1112+

11+„+>n(n1,n为自然数)2n 分析 与自然数有关的问题,可考虑用数学归纳法.设nk时成立,需证nk1时也成立,需证明k+k+

1>k1,可采用“凑项”的方法: k1kk11kk1k11=>==k1

k1k1k1k1111221222,右边2,所以, 2 证:(1)当n2时,左边左边右边.(2)假设nk时, 1111+

11+„+>k成立,则当nk1时, 2k+

1111+„++ k+

k12k1kkk11k1 =>

kk1k1k1k1k1

综上所述: 1.2关于不等式证明的常规方法(1)利用特殊值证明不等式

11+

11+„+>n 2n特殊性存在于一般规律之中,并通过特例表现出来.如果把这种辩证思想用于解题之中,就可开阔解题思路.第3页(共13页)

数学系数学与应用数学专业2009级年论文(设计)例1.2.1 已知ab,b0,ab1.求证(a+)(b+)≥

121a1b25.412112211125只需证明当ab时,(a+)(b+)≥.故可设ax

ab2411b x,(|x|且x0)22证:考虑a与b都去特殊值,既当ab时有(2)(2)=4则

a21b21(a21)(b21)(ab1)2111(a+)(b+)=== abababab33(x2)21(x2)2125=4>4=.114x244故原不等式得证.(2)利用分子有理化证明不等式

分母有理化是初中数学教材中重要知识,它有着广泛的应用,而分子有理化也隐含于各种习题之中,它不但有各种广泛的作用,而且在证明不等式中有它的独特作用.例1.2.2[1] 求证13-12<12-11.证:利用分子有理化易得:13-12=1312>12+11 1131211312,12-11=

11211, <

11211

即 13-12<12-11.(3)应用四种“平均”之间的关系证明不等式

四种“平均”之间的关系,既调和平均数h(a)≤几何平均数g(a)≤

第4页(共13页)

数学系数学与应用数学专业2009级年论文(设计)算数平均数a(a)≤平方平均数q(a).写得再详细些就是:若a1,a2,a3,an都是正实数,则:

111aa121≤na1a2an≤

a1a2ann≤

a21a2ann22

an(注:这一串不等式在不等式证明中起着举足轻重的作用.)例1.2.3 已知ab,求证a+证:a+

1≥3(ab)b111=(ab)+b +≥3×3(ab)b3

(ab)b(ab)b(ab)b(4)充分利用一些重要结论,使解题简捷

①对实数a,b,c,d有

a2b2≥2ababba;a2b2c2abbcca;a2b2c2d2abbccdda.②若a,b同号,则≥2;

若a,b,c均为正数,则≥3.a2b2ab2 ③若是正数,则≥≥ab≥(当且仅当ab时等号

1122abbaabbacbac成立)

a2b2c2abc3 若a,b,c是正数,则≥3abc≥

11133abc(当且仅当abc时等号成立)

例1.2.4 若a,b,c0,且abc1,求证 9

第5页(共13页)

1a1b1c

数学系数学与应用数学专业2009级年论文(设计)分析 证法较多,但由abc1与之间的联系,考虑算术平均与调和平均的关系式简便.证:由算术平均数和调和平均的关系可知

abc3 1113abc1a1b1c所以 abc99, 又abc1得 1

111111abcabc1a1b1c即 9.(5)利用式的对称性证明不等式

形如xy,a2b2c2的式子中任意两个量交换位置后结果仍不变,这就是“式”对称,可以用对称关系来解决一些不等式的证明.例1.2.5 设a,b,c,d是正数,且满足abcd1,求证 4a14b14c14d16

证:由4a1944a12942a13 注意到对称有:

94(abcd)1317(4a14b14c14d1)

422即 4a14b14c14d16 故原命题得证.(6)用“双十字法”证明不等式

例1.2.6 已知x,y0并且xy1 求证:

x23xy2y22xy32x221xy11y24x21y2

证:因 x23xy2y22xy3(x2y)(xy)2xy3

第6页(共13页)

数学系数学与应用数学专业2009级年论文(设计)=(x2y3)(xy1)0 类似的,2x221xy11y24x21y2(2xy2)(x11y1)0 故结论成立.(7)用恒等变形推导

例1.2.7[2] 求证:对于任意角度,都有58cos4cos2cos3≥0

证:58cos4cos2cos3

=58cos4(2cos21)(4cos33cos)

=15cos8cos24cos3(1cos)(4cos24cos1)=(1cos)(2cos1)20

(8)分解为几个不等式的和或积

例1.2.8[2] 已知a,b,c是不全相等的正数,求证:

a(b2c2)b(c2a2)c(a2b2)6abc

证: b2c22bc,a0,a(b2c2)2abc

2222b(ca)2abc,c(ab)2abc.同理

a,b,c不全相等,所以上述三式中,等号不能同时成立.把三式相加

a(b2c2)b(c2a2)c(a2b2)6abc

(注:这里把不等式的各项分别考虑,然后利用不等式的性质和推论,证得所求不等式.)

例1.2.9 设是锐角,求证:(111)(1)cos 证: 是锐角,0sin1,0cos1,0sin21, 这时 1121,1,cossin2第7页(共13页)

数学系数学与应用数学专业2009级年论文(设计)(111112)(1)1cossincossin2(9)利用极限证明不等式

例1.2.10[2]证明:当x2(1+2)时,有

(2x1)2(2x3)3(2x5)....xx3

证: 在x0的情况下讨论,令

f(x)(2x1)(2x3)3(2x5)....x,g(x)x3

则 f(x)x(x1)(2x1),6x(x1)(2x1)f(x)16于是 lim limxg(x)x3x3按极限的定义,对于,取2(12)当|x|2(12)有

f(x)11 , g(x)3414即 0f(x)71 从而f(x)g(x),故结论成立.12g(x)12(10)利用平分法证明不等式

例1.2.11 若x0,i1,2,3,且xi1,则

i1311127 2221x11x21x310 证:因为12111911x时有,所以,且当 x1ii22331xi1xi101119273 222101x11x21x310故

1.3关于不等式证明的非常规方法(1)换元法

这种方法多用于条件不等式的证明,换元法主要有三角代换和均值代

第8页(共13页)

数学系数学与应用数学专业2009级年论文(设计)换两种.三角代换时已知条件特征明显.在结构上必须和三角公式相似.例1.3.1 已知x2y21,求证:| x2+2xy-y2|≤2.证:令xrcos,yrsin

则 | x2+2xy-y2|=|r2(cos22sincossin2| =r2|cos2sin2| = r2|2sin(2450)|≤12×1=2

例1.3.2[4]设a,b,cr 且abc1,求证:a2b2c2≥.证:a=+α,b=+β,c=+γ, 因为abc1,所以 0

于是有a2b2c2=+()+(222)≥.(2)反证法

先假设所要证明的不等式不成立,即要证的不等式的反面成立,然后从这个假设出发进行正确的推理,最终推出与已知条件或已知真命题相矛盾的结论,从而断定假设错误,进而确定要证明的不等式成立.例1.3.3[5]求证:由小于1的三个正数a,b,c所组成的三个积(1-a)b,(1-b)c,(1-c)a,不能同时大于

证:(反证法)假设(1-a)b,(1-b)c,(1-c)a都大于

则有(1-a)b(1-b)c(1-c)a>

2***31314141 ① 641aa1但由01-a)a≤条件,即有,0(1-a)a≤.24同理有0(1-b)b≤,0(1-c)c≤.即(1-a)b(1-b)c(1-c)a≤② 64

1414第9页(共13页)

数学系数学与应用数学专业2009级年论文(设计)①与②产生矛盾,从而原命题成立.(3)构造法

在证明不等式时,有时通过构造某种模型、函数、恒等式、向量、对偶式等,完成不等式的证明.例1.3.4 求证 证: 设a=1212342n11.2n2n132n1242n,b=,352n142n12342n12n由于,,,,因此ab,23452n2n113242n1242n2n1)()a, 2n352n12n12n1所以a2ab(故 (4)判别式法

12342n11 2n2n1适用于含有两个或两个以上字母不等式,而另一边是关于某字母的二次式时,这时可考虑用判别式法.例1.3.5[6]x2x113求证:≤2≤.x122x2x1 证: 设f(x)y2,则(1y)x2x1y0,所以xr,x1当y1时,δ=b24ac≥0,即14(1y)2≥0,所以 |y1|≤,即≤y≤.又当y1时,方程的解x0,x2x113故 ≤2≤.x122121232(5)放缩法

第10页(共13页)

数学系数学与应用数学专业2009级年论文(设计)为了证明不等式的需要,有时需舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性达到目的.例1.3.6[5]设a,b为不相等的两个正数,且a3-b3=a2b2.求证1ab.证: 由题设得a3-b3=a2b2a2abb2ab, 于是(ab)2 a2abb2ab,则(ab)1,又(ab)24ab,(ab)2 而(ab)a2abbababab

422243即(ab)2ab,所以(ab), 综上所述, 1ab(6)向量法

向量这部分知识由于独有的形与数兼备的特点,使得向量成了数形结合的桥梁,在方法和理论上是解决其他一些问题的有利工具.对于某些不等式的证明,若借助向量的数量积的性质,可使某些不等式较易得到证明.例1.3.7 求证:求证1≤ 1x2x≤2

9.三、小结

证明不等式的途径是对原不等式作代数变形,在初等数学中常用的第11页(共13页)

1a1b1c

数学系数学与应用数学专业2009级年论文(设计)方法大致有放缩法、代换法、归纳法、反证法等等.然而涉及不等式的问题很广泛而且处理方法很灵活,仅在中学教科书上就有很多方法,但还不足以充分开拓人们的思维,为此,我们要进一步探究不等式的证明方法,并给出了在实例中的应用.参考文献

[1] 段明达.不等式证明的若干方法[j].教学月刊(中学版),2007(6).[2] 彭军.不等式证明的方法探索[j].襄樊职业技术学院学报,2007(4).[3] 周兴建.不等式证明的若干方法[j].中国科教创新导刊,2007(26).[4] 郭煜,张帆不等式证明的常见方法[j].高等函授学报(自然科学版),2007(4).[5] 王保国.不等式证明的六种非常规方法[j].数学爱好者(高二版),2007(7).[6] 赵向会.浅谈不等式的证明方法[j].张家口职业技术学院学报,2007(1).[7] 豆俊梅.高等数学中几类不等式的证明[j].中国科技信息,2007(18).[8] 刘玉琏,傅佩仁.数学分析讲义[m].北京:高等教育出版

第12页(共13页)

数学系数学与应用数学专业2009级年论文(设计)社,1988,p201-211.[9] 牛红玲.高等数学中证明不等式的几种方法[j].承德民族师专学报,2006(2).[10] 王喜春.不等式证明常用的技巧[j].数学教学研究,1995(2).第13页(共13页)

证明不等式的三种方法 证明不等式方法的开题报告篇三

不等式证明的若干方法

摘要:无论是在初等数学还是在高等数学中,不等式证明都是其中一块非常重要的内容.本文主要总结了高等数学中不等式的几种证明方法,高等数学中不等式证明的常用方法有利用函数的单调性、cauchy不等式、中值定理、泰勒公式、jensen不等式、定积分的性质、放大或缩小被积函数及变积分上下限证明不等式等.通过辅以例题对这些方法进行详细的分析,给出其适用范围、具体步骤及限制条件.其中利用函数的单调性和利用中值定理法是基础的方法,其它几种方法需要要重点掌握,并可在证明中灵活运用.关键词:不等式 积分 中值定理

some methods about inequality proof

abstract : the proving of the inequality is a very important content, whether in elementary mathematics or in higher paper mainly summarizes several methods of proving the inequality in higher higher mathematics inequality is usually proved by applying the monotony of a function, cauchy inequality, mean value theorem, taylor formula, jensen inequality, properties of definite integral, to zoom in or out the integrand, variable upper limit or lower limit and so methods are analyzed in detail through examples, and give its range of application, concrete steps and restricted these methods, the monotony of a function and mean value theorem are foundation methods and the others should be mastered conscientiously or are flexible application in the ds : inequality integral mean value theorem

数学世界中的量有相等关系,也有不等关系.一般与比较量有关的问题,都要用到不等式的知识.不等式问题不仅在数学领域有广泛的应用,而且在解决最优控制、最优化、经济等各种实际问题中也有广泛应用.它是研究和学习现代科学和技术的一个重要工具.由此可见,不等式问题的重要性, 而不等式证明又是不等式问题的精髓,由于不等式的形式各不相同,所以证明没有固定的步骤可依,方法灵活,技巧多样,因此不等式证明是数学中的难点之一.证明不等式的方法有很多,在初等数学中主要有综合法、分析法、比较法、反证法、数学归纳法、换元法等常用方法,但高等数学中的不等式证明又比初等数学中的不等式证明更为复杂,以上几种方法就很难解决高等数学

中复杂的不等式问题.[1]本文结合课本所学内容及平时积累的资料总结了几种高等数学中不等式证明的常用方法.1.利用函数的单调性

利用函数单调性证明不等式的步骤:(1)构造辅助函数f(x).(2)判断单调性:求f(x),并验证f(x)在指定区间上的增减性.(3)求出区间端点的函数值或极限值,比较后判断不等式.例1 证明不等式 e.e 证明

要证 ee,只需证明eln,即只要证明

令f(x)lnx1lnx(xe),则 f(x)0.(xe)xx2lneln.e因为 f(x)在e,上单调递减,又因为 e, 所以 f(e)f(),即lneln,得证.e 一般利用函数的单调性证明不等式需根据题目条件构造函数,此函数求导后可以很容易判断其在指定区间上的单调性,进而利用函数单调性证明不等式.[2] 2.利用cauchy(柯西)不等式

柯西不等式在不等式理论中占有重要地位,这个不等式结构对称和谐,应用广泛,巧妙灵活的运用它,可以使有些比较困难的问题迎刃而解,它的推论有多种形式,在定积分中schwarz不等式就是其中的一个推论.2.1 柯西不等式(aibi)a2i1i1nn2ibi1n2i也可写作

abi1niiab2ii1i1nn2i.2.2 积分的形式 当被积函数f(x),g(x)在区间a,b上连续,则有

bbb2 f(x)g(x)dxf(x)dxg(x)2dx.aaa2例2 已知f(x)0,在a,b上连续,f(x)dx2,k为任意实数,求证:

ab(f(x)sinkxdx)2(f(x)coskxdx)2 2

证明 由柯西不等式知,(f(x)sinkx)2[(f(x)f(x)sinkx)dx]2

aabb f(x)dxf(x)sin2kxdx

aabb 2f(x)sin2kx同理(f(x)coskxdx)22f(x)cos2kxdx, aabb所以(f(x)sinkxdx)2(f(x)coskxdx)2此种方法一般用于要证明的不等式中的某些式子经过变形后可以直接套用柯西不等式,这就需要对不等式认真观察和对柯西不等式的灵活应用.3.利用中值定理

3.1 微分中值定理(主要讲利用拉格朗日中值定理)微分中值定理是微分学中最重要的理论部分,它包括罗尔定理、拉格朗日中值定理、柯西中值定理等.拉格朗日中值定理建立了函数值与导数之间的定量关系,[3]拉格朗日中值定理是柯西中值定理的特殊形式,罗尔定理又是拉格朗日中值定理的特殊形式.而且拉格朗日公式有几种等价形式,在用拉格朗日中值定理证明不等式时要选择恰当的形式.3.1.1拉格朗日中值定理: 若函数f(x)满足如下条件:(1)在闭区间a,b上连续;(2)在开区间a,b内可导;

则在a,b内至少存在一点,使得f()3.1.2拉格朗日公式几种等价形式:(1)f(b)f(a)f()(ba), ab;(2)f(b)f(a)fa(ba)(ba), 01;(3)f(ah)f(a)f(ah)h, 01.3.1.3用拉格朗日中值定理证明不等式的一般步骤:

f(b)f(a).ba 3

(1)由题意作出a,b上的函数f(x),验证其满足条件.(2)再运用微分中值定理公式或其等价形式.(3)根据题目需要进行适当的放缩.[3] 例3 设0ab,证明不等式

babbaln.baa 证明 显然等式当且仅当ab0时成立.下证

当0ab时,有

babbaln.baa 作辅助函数f(x)lnx,则f(x)在a,b上满足拉格朗日中值定理,故a,b,使lnblna1.①

ba由于0ab, 所以 111.② ab1lnblna1, bbaababbaln由①②得

3.2 积分中值定理 3.2.1 积分第一中值定理

定理3.2.1 若f在a,b上连续,则至少存在一点a,b,使得

f(x)dxf()(ba).ab积分第一中值定理的条件简单,只需f(x)在a,b上连续即可.但此定理却非常重要,它是联系定积分与其积分函数的桥梁.其中的灵活性和任意性就是证明不等式的关键所在.例4 设f(x)为0,1上的非负单调非增连续函数(即当xy时,f(x)f(y)),证明对于01,有不等式

0f(x)dxf(x)dx 成立.证明

由题意及积分中值定理有

f(x)dxf()()f()(), 

 所以 101f(x)dxf()f(x)dx.(1)f(x)dxf(x)dx.0(1)f(x)dx0f(x)dx. 因为 0

1所以 11,  0f(x)dxf(x)dx.3.2.2 积分第二中值定理

定理3.2.2 设函数f(x)在a,b上可积.(i)若函数g(x)在a,b上是减函数,且g(x)0,则存在a,b,使得 f(x)g(x)dxg(a)f(x)dx;

aab(ii)若函数g(x)在a,b上是增函数,且g(x)0,则存在a,b,使得 f(x)g(x)dxg(b)f(x)推论 设函数f在a,b上可积,若g为单调函数,则存在a,b,使得baf(x)g(x)dxg(a)f(x)dxg(b)f(x)dx.ab在积分第二中值定理中,用推论证明不等式运用比较广泛,推论中对g(x)的限制比定理中对g(x)的限制条件更为宽松,它解决的题目范围也会扩大.例5 设f(x)为a,b上的连续递增函数,则成立不等式

b xf(x)dxaabbf(x)dx.a2ba证明

要证不等式成立,只需证明 (xab)f(x)dx0.2 由于f(x)单调递增,利用积分第二中值定理,则存在a,b,使

bababab)f(x)dxf(a)(x)dxf(b)(x)dx aa222bbabab)dxf(b)f(a)(x)dx =f(a)(xa22 b(xb22ab =f(b)f(a)(b)

22 =f(b)f(a) 得证.利用中值定理证明不等式要满足定理的条件,通过构造、变换找到符合的条件,再一步步解决所要证明的不等式.微分中值定理中用的比较多的是拉格朗日中值定理,而积分中值定理中它的推论用得比较频繁.[3]

b(a)0.24.利用泰勒公式

泰勒定理 若函数f在a,b上存在直至n阶的连续导函数,在a,b内存在(n1)阶导函数,则对任意给定的x,x0a,b,至少存在一点a,b,使得

f(x0)f(n)(x0)2f(x)f(x0)f(x0)(xx0)(xx0)(xx0)n2!n!

f(n1)()(xx0)n1.(n1)!泰勒公式是拉格朗日中值定理的推广,当n=0时,即是拉格朗日中值定理,所以用 泰勒公式证明不等式的步骤类似于利用拉格朗日中值定理证明不等式的步骤,只不过泰勒公式适用于n阶导数的问题.[3]

例6 若f(x)在0,1上二次可微,且f(0)f(1),f(x)1.证明 f(x)证明

设x0,1,由泰勒公式知

1.2 6

1f(1)(0x)2,01x1.① 21 f(1)f(x)f(x)(1x)f(2)(1x)2, 0x21.② f(0)f(x)f(x)(0x) 由①-②得: 1 f(x)[f(1)x2f(2)(1x)2] 所以 f(x)[f(1)x2f(2)(1x)2] [x2(1x)2] [x(1x)]2 .2 得证.在要证明的不等式中含有二阶或二阶以上的导数时一般可利用泰勒公式,特别在以下四种情况下利用泰勒公式证明不等式更为简便:①已知某点的函数值②已知某点的导函数值③已知函数某阶导数的符号④已知函数某阶导数有界.泰勒公式的应用要灵活、巧妙、合理.5.利用jensen(詹森)不等式

定理5.1 若f为a,b上的凸函数,则对任意xia,b,i0(i1,2,,n), i1,有 f(ixi)if(xi).i1i1i1nnn詹森不等式与函数的凹凸性有关,凹凸函数的性质为构建不等式和证明不等式提供了空间和依据.例7 证明不等式 abc(abc)证明 设f(x)xlnx,x0.由f(x)的一阶和二阶导数f(x)lnx1,f(x)1 可知, xabcabc3,其中a,b,c均为正数.f(x)xlnx在x0时为严格凸函数,依詹森不等式有 f(abc1)(f(a)f(b)f(c)),33 7

abcabc1ln(alnablnbclnc),333abcalnablnbclnc

(abc)ln3abcabc)aabbcc.即(3abc又因为 3abc

3所以

所以(abc)abc3aabbcc,不等式得证.使用詹森不等式一般要先构造满足条件的函数,即在某区间上是凸函数,接着找到合适的i,使i1.要求有良好的思维能力,善于观察、分析.i1n6.利用定积分的性质

性质1 设f为a,b上的可积函数,若f(x)0, xa,b,则

f(x)dx 推论 若f与g为a,b上的两个可积函数,且f(x)g(x),xa,b,则有f(x)dxg(x)性质2 若f在a,b上可积,则f在a,b上也可积,且 baf(x)dxf(x)利用定积分的性质证明不等式的过程中,要学会利用微分和积分的互逆,运用积分自身的单调性,把问题的关键放在不等式两边构造的积分形式当中,再运用定积分的性质证明不等式.例8 设f(x)在0,1上连续,且f(x)0.证明 lnf(x)dxlnf(x)dx.0011证明 记af(x)dx, 01 因为 f(x)0 所以 a(x)f(x)f(x)ln[1(1)] 两端积分 lnf(x)dxlnadx0011f(x)dx10.0a10 因为 lnf(x)dxlnadxlnalnf(x)dx.0011 所以 lnf(x)dxlnf(x)dx.0011例9 设a0,函数f(x)在0,a上连续可微,证明: f(0)a1af(x)dx0f(x)dx.a0证明 因为f(x)连续,由积分中值定理知,0,a,使得f(x)dxf()a.0a 又因为 f()f(0)f(x)dx,0 所以 f(0)f()f(x)dxf()00f(x)dx

a1a f(x)dxf(x)dx

0a0 a1af(x)dxf(x)dx.得证 00a证明定积分形式不等式常用定积分的性质,有时也与积分中值定理结合.7.利用放大或缩小被积函数及变积分上下限证明不等式

放大或缩小被积函数要注意放缩的尺度,根据被积函数的特点以及要证明的不等式进行放缩.当不等式中的被积函数连续时,可以把积分上限或下限作为一个变量,构造一个变上限或下限的积分函数,再证明不等式.例10 设g(x)为随机变量x取值的集合上的非负不减函数,且e(g(x))存在,证明:对任意的0,有p(x)证明 记p(x)为x的密度函数,则 p(x)e(g(x)).g()p(x)dxg(x)p(x)dx g()g(x)e(g(x))p(x)dx.得证

g()g()上题是放大或缩小被积函数法在概率论问题中的应用,结合了概率中的有关期望的知识.概率论的发展是建立在微积分的基础之上,微积分的方法和理论渗透到概率

论中的各个方面.微积分是基础,在某些方面概率论和微积分有很大联系.高等数学中的一些方法可以运用到概率论中,反之,概率论中的一些知识也可以很容易解决高等数学中的一些问题.上述总结了高等数学中证明不等式的几种方法,其中函数的单调性及中值定理比较简单,其他几种方法需要认真掌握.有些不等式的证明可以直接套用公式,有些比较复杂,运用的方法灵活多变.不过,利用中值定理与泰勒公式证明不等式的问题比较常见.高等数学中不等式问题有很多,证明不等式的方法也有很多,这里只是简单总结了几种比较常用的方法,而这些方法也只是解决了高等数学中的一部分不等式问题.随着后继课程的出现如在泛函分析、复变函数、常微分方程中也会出现新的不等式问题,那么不等式证明的方法可能会有进一步的更新,这就要求大家平时思维要广阔,善于分析解决问题,培养良好的思维习惯.对于不等式的证明要细心观察,找到最合适的方法并及时总结.参考文献

[1] 王兴良.浅谈加强数学的应用性教学[j].宁夏财会,2001年10期.[2] 凡丽.利用导数处理与不等式有关的问题[j].中国基础教育研究,2009年3期.[3] 华东师范大学数学系 编.数学分析上册(第三版)[m].北京:高等教育出版社,2001.[4] 钱吉林 等主编.数学分析题解精粹(第二版)[m].崇文书局,2009年3月.[5] 茆诗松,程依明编著.概率论与数理统计教程[m].北京:高等教育出版社,2004,7.[6] 李金寨 等.微积分证明不等式在高校教学中的应用和开展[j].吉林省教育学院学报, 2010年第九期,第26卷.120-122.[7] 姚志健.概率论的思想方法在证明数学不等式中的应用[j].甘肃联合大学学报,2009年11月,第23卷第六期.[8] 朱家荣,彭展声.浅谈一元微积分学在证明不等式中的应用[j].南宁师范学校高等专科学校学报,2006年3月,第23卷第1期:82-84.[9] 王建福等编著.高等数学同步辅导及习题全解[m].徐州:中国矿业大学出版社,2006,8.[10] 霍连林.著名不等式[m].北京:中国物质出版社,1994.[11] tom atical analysis(second edotion)[m].beijing:china machine press,1994.[12] gao mingzhe on heisenberg’s inequality[j].,1999.

证明不等式的三种方法 证明不等式方法的开题报告篇四

不等式的证明是高中数学的一个难点,题型广泛,涉及面广,证法灵活,错法多种多样,本节通这一些实例,归纳整理证明不等式时常用的方法和技巧。1比较法

比较法是证明不等式的最基本方法,具体有“作差”比较和“作商”比较两种。基本思想是把难于比较的式子变成其差与0比较大小或其商与1比较大小。当求证的不等式两端是分项式(或分式)时,常用作差比较,当求证的不等式两端是乘积形式(或幂指数式时常用作商比较)

例1已知a+b≥0,求证:a3+b3≥a2b+ab

2分析:由题目观察知用“作差”比较,然后提取公因式,结合a+b≥0来说明作差后的正或负,从而达到证明不等式的目的,步骤是10作差20变形整理30判断差式的正负。

∵(a3+b3)(a2b+ab2)

=a2(a-b)-b2(a-b)

=(a-b)(a2-b2)

证明: =(a-b)2(a+b)

又∵(a-b)2≥0a+b≥0

∴(a-b)2(a+b)≥0

即a3+b3≥a2b+ab2

例2 设a、b∈r+,且a≠b,求证:aabb>abba

分析:由求证的不等式可知,a、b具有轮换对称性,因此可在设a>b>0的前提下用作商比较法,作商后同“1”比较大小,从而达到证明目的,步骤是:10作商20商形整理30判断为与1的大小

证明:由a、b的对称性,不妨解a>b>0则

aabbabba=aa-bbb-a=(ab)a-b

∵ab0,∴ab1,a-b0

∴(ab)a-b(ab)0=1即aabbabba>1,又abba>0∴aabb>abba

练习1 已知a、b∈r+,n∈n,求证(a+b)(an+bn)≤2(an+1+bn+1)2基本不等式法

利用基本不等式及其变式证明不等式是常用的方法,常用的基本不等式及变形有:

(1)若a、b∈r,则a2+b2≥2ab(当且仅当a=b时,取等号)

(2)若a、b∈r+,则a+b≥ 2ab(当且仅当a=b时,取等号)

(3)若a、b同号,则 ba+ab≥2(当且仅当a=b时,取等号)

例3 若a、b∈r,|a|≤1,|b|≤1则a1-b2+b1-a2≤

1分析:通过观察可直接套用: xy≤x2+y2

2证明: ∵a1-b2b1-a2≤a2+(1-b2)2+b2-(1-a2)2=1

∴b1-a2+a1-b2≤1,当且仅当a1+b2=1时,等号成立

练习2:若 ab0,证明a+1(a-b)b≥

33综合法

综合法就是从已知或已证明过的不等式出发,根据不等式性质推算出要证明不等式。

例4,设a0,b0,a+b=1,证明:(a+1a)2+(b+1b)2≥252

证明:∵ a0,b0,a+b=1

∴ab≤14或1ab≥

4左边=4+(a2+b2)=1a2+1b2=4+[(a+b)2-2ab]+(a+b)2-2aba2b2

=4+(1-2ab)+1-2aba2b2≥4+(1-12)+8=252

练习3:已知a、b、c为正数,n是正整数,且f(n)=1gan+bn+cn

3求证:2f(n)≤f(2n)

4分析法

从理论入手,寻找命题成立的充分条件,一直到这个条件是可以证明或已经证明的不等式时,便可推出原不等式成立,这种方法称为分析法。

例5:已知a0,b0,2ca+b,求证:c-c2-ab<a<c+c2-ab

分析:观察求证式为一个连锁不等式,不易用比较法,又据观察求证式等价于 |a-c|<c2-ab也不适用基本不等式法,用分析法较合适。

要证c-c2-ab<a<c+c2-ab

只需证-c2-ab<a-c<c2-ab

证明:即证 |a-c|<c2-ab

即证(a-c)2<c2-ab

即证 a2-2ac<-ab

∵a>0,∴即要证 a-2c<-b 即需证2+b<2c,即为已知

∴ 不等式成立

练习4:已知a∈r且a≠1,求证:3(1+a2+a4)>(1+a+a2)

25放缩法

放缩法是在证明不等式时,把不等式的一边适当放大或缩小,利用不等式的传递性来证明不等式,是证明不等式的重要方法,技巧性较强常用技巧有:(1)舍去一些正项(或负项),(2)在和或积中换大(或换小)某些项,(3)扩大(或缩小)分式的分子(或分母)等。

例6:已知a、b、c、d都是正数

求证: 1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<

2分析:观察式子特点,若将4个分式商为同分母,问题可解决,要商同分母除通分外,还可用放缩法,但通分太麻烦,故用放编法。

证明:∵ba+b+c+cb+c+d+dc+d+a+ad+a+b>

ba+b+c+d+ca+b+c+d+da+b+c+d+aa+b+c+d=a+b+c+da+b+c+d=

1又由ab<a+mb+m(0<a<b,m>0)可得:ba+b+c<b+da+b+c+dcb+c+d<c+aa+b+c+ddc+d+a<d+bc+d+a+dad+a+b<a+ca+b+c+d

∴ ba+b+c+cb+c+d+dc+d+a+ad+a+b<

b+da+b+c+d+c+aa+b+c+d+d+bc+d+a+d+a+ca+b+c+d=2(a+b+c+c)a+b+c+d=2

综上知:1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<2

练习5:已知:a<2,求证:loga(a+1)<1

6换元法

换元法是许多实际问题解决中可以起到化难为易,化繁为简的作用,有些问题直接证明较为困难,若通过换元的思想与方法去解就很方便,常用于条件不等式的证明,常见的是三角换元。

(1)三角换元:

是一种常用的换元方法,在解代数问题时,使用适当的三角函数进行换元,把代数问题转化成三角问题,充分利用三角函数的性质去解决问题。

7、若x、y∈r+,且 x-y=1 a=(x-1y)(y+1y)。1x,求证0<a<

1证明: ∵x,y∈r+,且x-y=1,x=secθ,y=tanθ,(0<θ<xy)

∴ a=(secθ-1secθ(tanθ+1tanθ·1sec2θ

=1-cos2θcosθ·s2m2θ+cos2θcosθ·s2mθ·cos2θ

=sinθ

∵0<θ<x2,∴ 0<s2mθ <1因此0<a<1

复习6:已知1≤x2+y2≤2,求证:12 ≤x2-xy+y2≤

3(2)比值换元:

对于在已知条件中含有若干个等比式的问题,往往可先设一个辅助未知数表示这个比值,然后代入求证式,即可。

例8:已知 x-1=y+12=z-23,求证:x2+y2+z2≥431

4证明:设x-1=y+12=z-23=k

于是x=k+1,y=zk-1,z=3k+

2把上式代入x2+y2+z2=(k+1)2(2k-1)2+(3k+2)2

=14(k+514)2+4314≥4314

7反证法

有些不等式从正面证如果不好说清楚,可以考虑反证法,即先否定结论不成立,然后依据已知条件以及有关的定义、定理、公理,逐步推导出与定义、定理、公理或已知条件等相矛盾或自相矛盾的结论,从而肯定原有结论是正确的,凡是“至少”、“唯一”或含有否定词的命题,适宜用反证法。

例9:已知p3+q3=2,求证:p+q≤

2分析:本题已知为p、q的三次,而结论中只有一次,应考虑到用术立方根,同时用放缩法,很难得证,故考虑用反证法。

证明:解设p+q>2,那么p>2-q

∴p3>(2-q)3=8-12q+6q2-q

3将p3+q3 =2,代入得 6q2-12q+6<0

即6(q-1)2<0 由此得出矛盾∴p+q≤

2练习7:已知a+b+c>0,ab+bc+ac>0,abc>0.求证:a>0,b>0,c>0

8数学归纳法

与自然数n有关的不等式,通常考虑用数学归纳法来证明。用数学归纳法证题时的两个步骤缺一不可。

例10:设n∈n,且n>1,求证:(1+13)(1+15)…(1+12n-1)>2n+12

分析:观察求证式与n有关,可采用数学归纳法

证明:(1)当n=2时,左= 43,右=52

∵43>52∴不等式成立

(2)假设n=k(k≥2,k∈n)时不等式成立,即(1+13)(1+15)…(1+12k-1)>2k+12 那么当n=k+1时,(1+13)(1+15)…(1+12k-1)(1+12k+1)>2k+12·(1+12k+1)①

要证①式左边>2k+32,只要证2k+12·

2k+22k+1>2k+32②

对于②〈二〉2k+2>2k+1·2k+3

〈二〉(2k+2)2>(2k+1)(2k+3)

〈二〉4k2+8k+4>4k2+8k+3

〈二〉4>3③

∵③成立 ∴②成立,即当n=k+1时,原不等式成立

由(1)(2)证明可知,对一切n≥2(n∈n),原不等式成立

练习8:已知n∈n,且n>1,求证: 1n+1+1n+2+…+12n>132

49构造法

根据求证不等式的具体结构所证,通过构造函数、数列、合数和图形等,达到证明的目的,这种方法则叫构造法。

1构造函数法

例11:证明不等式:x1-2x <x2(x≠0)

证明:设f(x)=x1-2x-x2(x≠0)

∵f(-x)

=-x1-2-x+x2x-2x2x-1+x

2=x1-2x-[1-(1-2x)]+x2=x1-2x-x+x2

=f(x)

∴f(x)的图像表示y轴对称

∵当x>0时,1-2x<0,故f(x)<0

∴当x<0时,据图像的对称性知f(x)<0

∴当x≠0时,恒有f(x)<0 即x1-2x<x2(x≠0)

练习9:已知a>b,2b>a+c,求证:b-b2-ab<a<b+b2-ab

2构造图形法

例12:若f(x)=1+x2,a≠b,则|f(x)-f(b)|< |a-b|

分析:由1+x2 的结构可知这是直角坐标平面上两点a(1,x),0(0,0)的距离即 1+x2 =(1-0)2+(x-0)2

于是如下图,设a(1,a),b(1,b)则0a= 1+a2 0b=1+b2

|ab|=|a-b|又0a|-|0b<|ab|∴|f(a)-f(b)|<|a-b|

练习10:设a≥c,b≥c,c≥0,求证 c(a-c)+c(b-c)≤ab

10添项法

某些不等式的证明若能优先考虑“添项”技巧,能得到快速求解的效果。

1倍数添项

若不等式中含有奇数项的和,可通过对不等式乘以2变成偶数项的和,然后分组利用已知不等式进行放缩。

例13:已知a、b、c∈r+,那么a3+b3+c3≥3abc(当且仅当a=b=c时等号成立)证明:∵a、b、c∈r+

∴a3+b3+c3=12 [(a3+b3)+(b3+c3)+(c3+a3)]≥12 [(a2b+ab2)+(b2c+bc2)+(c2a+ca2)]=12[a(b2+c2)+b(c2+a2)+c(a2+b2)]≥12(a·2bc+b·2ca+c·2ac)=3abc

当且仅当a=b,b=c,c=a即a=b=c时,等号成立。

2平方添项

运用此法必须注意原不等号的方向

例14 :对于一切大于1的自然数n,求证:

(1+13)(1+15)…(1+12n-1> 2n+1 2)

证明:∵b > a> 0,m> 0时ba> b+ma+m

∵ [(1+13)(1+15)…(1+12n-1)]2=(43、65…2n2n-1)(43、65…2n2n-1)>(54、76…2n+12n)(43、65…2n2n-1)=2n+13> 2n+14>

∴(1+13)(1+15)…(1+12n-1)>2n+1 2)

3平均值添项

例15:在△abc中,求证sina+sinb+sinc≤3

32分析:∵a+b+c=π,可按a、b、c的算术平均值添项sin π

3证明:先证命题:若x>0,y<π,则sinx+siny≤2sin x+y2(当且仅当x=y时等号成立)∵0<x+y2< π,-π2< x-y2< π2sinx+siny=2sin x+y2cosx-y

2∴上式成立

反复运用这个命题,得sina+sinb+sinc+sin π3≤2sina+b2+2sinc+π32≤2·2sina+b2+c+π322 =4sinπ3=332

∴sina+sinb≠sinc≤332

练习11 在△abc中,sin a2sinb2sinc2≤18

4利用均值不等式等号成立的条件添项

例16 :已知a、b∈r+,a≠b且a+b=1,求证a4+b4> 18

分析:若取消a≠b的限制则a=b= 12时,等号成立

证明:∵a、b∈r+∴a4+3(12)4 ≥ 44a4 [(12)4]3=12a①

同理b4+3(12)4 ≥b②

∴a4+b4≥12(a+b)-6(12)4=12-6(12)4=18③

∵a≠b ∴①②中等号不成立∴③中等号不成立∴ 原不等式成立

1.是否存在常数c,使得不等式 x2x+y+yx+2y≤c≤xx+2y+y2x+y对任意正数x,y恒成立? 错解:证明不等式x2x+y+ yx+2y≤xx+2y+y2x+y恒成立,故说明c存在。

正解:x=y得23 ≤c≤23,故猜想c= 23,下证不等式 x2x+y+ yx+2y≤23≤xx+2y+y2x+y恒成立。要证不等式xx+2y+xx+2y≤23,因为x,y是正数,即证3x(x+2y)+3y(2x+y)≤2(2 x+y)(x+2y),也即证3x2+12xy+3y2 ≤2(2x2+2y2+5xy),即2xy≤x2+y2,而此不等式恒成立,同理不等式 23≤xx+2y+y2x+y也成立,故存在c=23 使原不等式恒成立。

6.2已知x,y,z∈r+,求证:x2y2+y2z2+z2x2x+y+z ≥ xyz

错解:∵ x2y2+y2z2+z2x2≥ 3 3x2y2y2z2z2x2=3xyz3xyz 又x+y+z ≥ 3xyz ∴x2y2+y2z2+z2x2x+y+z≥ 3xyz33xyz33xyz=xyz

错因:根据不等式的性质:若a >b> 0,c >d >0,则ac bd,但 ac>bd却不一定成立 正解:x2y2+y2z2≥ 2x y2z,y2z2+z2x2≥ 2x yz2,x2y2+z2x2≥ 2x 2yz,以上三式相加,化简得:x2y2+y2z2+z2x2≥xyz(x+y+z),两边同除以x+y+z:

x2y2+y2z2+z2x2x+y+z ≥ xyz

6.3 设x+y>0,n为偶数,求证yn-1xn+xn-1yn≥

1x 1y

错证:∵yn-1xn+xn-1yn-1x-1y

=(xn-yn)(xn-1-yn-1)xnyn

n为偶数,∴ xnyn >0,又xn-yn和xn-1-yn-

1同号,∴yn-1xn+xn-1yn≥ 1x-1y

错因:在x+y>0的条件下,n为偶数时,xn-yn和xn-1-yn-1不一定同号,应分x、y同号和异号两种情况讨论。

正解:应用比较法:

yn-1xn+xn-1yn-1x-1y=(xn-yn)(xn-1-yn-1)xnyn

① 当x>0,y>0时,(xn-yn)(xn-1-yn-1)≥ 0,(xy)n >0

所以(xn-yn)(xn-1-yn-1)xnyn

≥0故:yn-1xn+xn-1yn≥ 1x-1y

② 当x,y有一个是负值时,不妨设x>0,y<0,且x+y>0,所以x>|y|

又n为偶数时,所以(xn-yn)(xn-1-yn-1)>0 又(xy)n >0,所以(xn-yn)(xn-1-yn-1)xnyn ≥0即 yn-1xn+xn-1yn≥ 1x-1y

综合①②知原不等式成立

    版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。

    本文地址:https://www.nuenian.com/fanwen/baogaofanwen/19115a8d4a5068140d40c352c15f8f49.html

相关内容

热门阅读
随机推荐