首页 > 范文 > 其他范文

分数除法教案人教版(十篇)

分数除法教案人教版(十篇)



作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。怎样写教案才更能起到其作用呢?教案应该怎么制定呢?下面是小编整理的优秀教案范文,欢迎阅读分享,希望对大家有所帮助。

分数除法教案人教版篇一

(1)分数除法的意义和整数除以分数

教学目标:

1、 通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。

2、 动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。

3、 培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。

教学重点:

使学生理解算理,正确总结、应用计算法则。

教学难点:

使学生理解整数除以分数的算理。

教学过程:

一、复习

1、复习整数除法的意义

(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。

(2)根据已知的乘法算式:56=30,写出相关的两个除法算式。(305=6,306=5)

2、口算下面各题

36

二、新授

1、教学例1

(1)出示插图及乘法应用题,学生列式计算:1003=300(克)

(2)学生把这道乘法应用题改编成两道除法应用题,并解答。

a、3盒水果糖重300克,每盒有多重?3003=100(克)

b、300克水果糖,每盒100克,可以装几盒?300100=3(盒)

(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。

3=(千克)3=(千克)3=3(盒)

(4)引导学生通过整数题组和分数题组的对照,小组讨论后得出:分数除法的.意义与整数除法相同,都是已知两个因数的积与其中一个因数,求另个一个因数。都是乘法的逆运算。

2、巩固分数除法意义的练习:p28做一做

3、教学例2

(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。

(2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。

(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。

a、2==,每份就是2个。

b、2==,每份就是的。

(4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。

4、引导学生观察2和3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。

三、练习

四、总结

1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)

2、谁来把这两部分内容说一说?

分数除法教案人教版篇二

1、同学们,你能口算95930÷362等于多少吗?为什么?(学生回答数据太大,不好口算)

如果已知265×362=95930,你能说出答案吗?为什么?

(引导学生说出整数除法的意义:已知两个因数的积和其中一个因数,求另一个因数的运算)

1、2/7 ×( )=1,括号内填几分之几?为什么?

2、根据这道乘法算式,你能说两道除法算式吗?根据是什么?

(引导说出分数除法的意义)

3、完成p25做一做

1、这节课我们学习分数除法

2、同学们已经了解分数除法的意义,你还想学习关于分数除法的什么知识?

3、事实上,有一些分数除法同学们是会计算的。下面口算几题:

3/8÷3/8 0÷4/9 1÷2/5 3/4÷1

你是根据什么知识口算这几道题的?

4、上面这四道题是一些特殊的分数除法,我们继续学习其他的分数除法。

出示例题:一张纸的 平均分成3份,每份是这张纸的几分之几?(图略)

怎样列式? 你能根据图说出算式的结果吗?怎样证明这个结果是正确的`呢?(引导学生从多个角度证明结果的正确性 )

根据学生的回答板书:

3/4÷3 = 3÷34 = 1/4

你能归纳这种分数除以整数的计算方法吗?

5、用这种方法口算:

3/4÷3 4/9÷4 10/9÷5 6/7÷2

6、质疑

你认为这种计算方法适用于所有的分数除以整数吗?能举例说明吗?

7、小组讨论,自主学习分数除以整数

用学生所举的例子作为教学例题(例如 1/5÷3),在数学学习过程中,我们经常遇到新问题,这时需要考虑如何将新问题转化为已学过的旧知。现在看一看,我们已经掌握了哪些分数除法的知识:

(1)分数除以整数,用分子除以整数的商作分子,分母不变。

(2) 1除以一个分数,结果是该分数的倒数。

(3)一个分数除以1,结果是原分数。

你能将1/5 ÷3转化成已经掌握的分数除法吗?小组讨论并将讨论结果记录下来。

8、小组汇报

(1)1/5 ÷3=3/15 ÷3=1/15

(2)1/5 ÷3=(1/5 ×5)÷(3×5)=1÷15=

(3)1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15

(4) ……

你能归纳自己小组讨论的分数除以整数的计算方法吗?

(1)先将分子和分母同时扩大相同的倍数,使除数能整除分子,再用前面的方法计算。

(2)利用商不变性质,将分数除以整数转化成1除以一个数,再计算。

(3)利用商不变性质,将分数除以整数转化成一个分数除以1,再计算。

(4)……

9、观察第三种方法:

1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15

这个计算过程还可以更简洁些,你能看出来吗?

化简得: 1/5 ÷3=( 1/5×1/3 )÷(3×1/3 )= 1/5×1/3 =1/15

观察 1/5÷3== 1/5×1/3 ,你能说一说吗?

(引导学生说出分数除以整数,等于分数乘整数的倒数)

10、计算方法的优化

刚才小组讨论时,每组用一种方法计算了 1/5÷3,现在你能用其他的方法计算一下吗?

学生计算后提问:你喜欢那种方法?为什么?

总结分数除以整数的计算法则:

分数除以整数(零除外),等于分数乘整数的倒数。

11、对其他的方法,你又有什么要说的吗?

(引导说出当分子能被整数整除时,可以直接用分子除以整数的商作分子,分母不变的方法。培养学生从不同角度观察、分析问题)

1、计算下列各题

2/3÷3 2/11÷2 3/8÷6 5/4÷2

2、练习七第1题

3、讨论题

1/3÷a和 1/a÷3(a≠0),那道题的结果大?为什么?

分数除法教案人教版篇三

培养学生动手动脑能力,以及计算能力。

体验整数除以分数的计算方法,并能正确的计算。

培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验成功的欢乐。

整数除以分数的计算方法。

在小组间交流合作的.基础上,提高计算能力和计算速度。

小黑板

一、导入新课。

前一课我们学习了整数除以分数的计算方法,你们还记得吗?老师考一考你们好吗,看题目。

6÷=÷=÷=÷=

2÷=÷=÷=÷=

通过提问,全班订正,导入新课。并评价。

二、用小黑板出示下列题目。

3x=x=10x=25x=

提问学生解方程的规律,并指名说一说第一小题的解法。

其它题目独立作,全班订正。

三、课本第三题

指名说出题目的意思,然后解答,全班判定。

四、第四题

1、先独立计算,全班订正。

2、小组间交流发现了什么规律。

3、全班交流。

4、教师小结。

整数除以分数

除以真分数商大于整数

整数除以分数除以1商等于整数

除以假分数商小于整数

分数除法教案人教版篇四

分数除法同分数乘法一样,都是小学阶段重要的数学内容,从过去的教学实践来看,这部分知识历来是学生数学学习的难点。原《大纲》的要求是:理解分数除法的意义;掌握分数除法计算法则;会计算分数除法;会口算简单的分数除法;会进行分数四则混合运算(不超过三步);会解答分数应用题(最多不超过两部)。《数学课程标准》关于分数除法的具体标准是:会进行分数除法运算和混合运算(以两步为主,不超过三步)。会解决有关分数的简单实际问题。《数学课程标准》与原《大纲》相比,分数除法计算方面的要求没有大的变化,只是把《大纲》中的混合运算的步数”不超过三步“改为”以两步为主,不超过三步“。变化较大的同分数乘法一样,仍然是淡化分数除法的意义,强调会进行分数除法计算和解决简单实际问题。本单元教材与传统教材相比,从编写思想、内容编排、教学方式等方面都有了较大的变化,主要有以下几个方面的特点:

从传统分数除法教材来看,主要有三个重点。第一,分数除法的意义;第二,分数除法法则。即:一个数除以分数,等于这个数乘以分数的倒数。第三,用方程或算术两种方法解决分数除法问题。从知识的建构上看,学生学习整数除法时对除法就是”平均分“已经非常熟悉,而现实生活中,又很难找到具体的事例来说明”一个数除以分数“的实际意义。所以,传统教材中选用”已知两个因数的积和其中一个因数,求另一个因数的运算“来说明分数除法的意义。这种乘除互逆关系是重要的数学结论,应该在学生乘除计算的知识背景下让学生认识。但是,现在用这个关系来定义分数除法意义的表述,对学生来说实在难于理解,再加上枯燥的看算式说意义的练习,使学生一开始接触分数除法就一头雾水。另外,这个分数除法的意义与”一个数除以分数,等于这个数乘以分数的倒数“这一分数除法的核心知识点又没有一点联系。所以,造成既增加学生的学习难度,又不利于学生掌握知识的情况。本着”降低难度,突出重点“的原则,本套教材首先不安排分数除法意义的内容。而是利用学生已有的整数除法意义的知识,通过现实的,学生能理解的具体事例,学习除法计算。明白为什么用除法?为什么这样算?如,为了解决”一个数除以分数,等于这个数乘分数的倒数“这一分数除法的'核心知识点。教材首先安排了三组整数除法和分数乘法相对应口算练习,通过观察计算结果和算式的特点,让学生发现”甲数÷乙数=甲数×乙数的倒数“的规律。然后,选择学生生活中的现实问题,妈妈买来1/2张饼,把它平均分成3份,每份是整张大饼的几分之几?解决这个问题,学生自己的知识和经验是把半张饼平均分成3份,列式是÷3。甲数÷乙数=甲数×乙数的倒数以及3的倒数是。在解决问题的过程中,借助直观图,把学生已有的知识和经验整合在一起,生成新的数学知识,分析除以一个数(0除外)等于分数乘这个数的倒数。这样设计分数除法法则的学习,首先删去了学生难于理解的计算方法推导的过程,另外,由整数除法和分数乘法的规律迁移到分数除法,是一个计算方法验证过程,也是计算方法形成和巩固的过程。在这里,删去的是次要的、过高的要求,强化的是学生扎扎实实进行分数除法计算最基本、最有价值的内容。同时,培养了学生自主建构知识的能力。

从过去的经验看,分数除法应用问题的特点是”已知部分和所对应的分率,求整体“。实事求是地讲,这样的应用问题都是已发生的事物,是经过人为”加工“、”编造“的应用问题。这样的问题解决虽然在现实生活中应用较少,但在传统教材和教学中,一直是教材内容的重点和教学评价选题的焦点。众所周知,在很长时期内,分数除法问题要求用算术方法和方程两种方法解答,而用算术方法解答无论如何也找不到学生能够理解的、能够说明并理解数量关系的问题情境。所以,人们就用”已知部分和所对应的分率,求整体,用除法“的解题套路来解决问题。这样的学习,不利于学生理解问题中的数量关系,没有思维的条理性训练,有的只是死记硬背和机械的模仿训练。本教材有关分数除法问题的解决只采用列方程解答。这样设计的思考有以下几点:第一,有利于学生应用已有知识解决问题。即:把单位”1“看作χ,根据”求一个数的几分之几是多少,用乘法“找到题中的等量关系。第二,渗透数学建模的思想。方程是现实运算的一个有效的数学模型。结合分数除法问题的解决,通过一些典型事例,让学生经历分析问题(找等量关系)--列出方程表示--解方程等过程。这是《数学课程标准》提倡的数学建模思想的具体体现。

线段图作为小学阶段数形结合,分析数量关系的工具,历来成为小学数学中的重要内容。传统教材和教学中,人们在关注用线段直观描述数量关系的同时,也把用线段图表示数量关系作为一般要求。即,把画线段表示题中的数量关系作为学习要求,增加了学习的难度。本套教材,只发挥线段图的工具性。即:借助线段图分析数量关系,不把画线段图表示数量关系作为学习要求。通过线段图来分析问题中的数学信息和数量关系,从而找出问题中隐含的等量关系。让学生在自主解决问题中,体会画图分析问题、解决问题的优越性和工具性。

本单元共安排5课时。主要内容包括:分数除以整数;一个数除以分数;简单的应用问题;混合运算。

1、会进行简单的分数除法以及分数四则混合运算,能用方程解决有关分数除法的简单实际问题。

2、能借助线段图分析数量关系,在用方程解简单分数除法应用问题的过程中,能进行有条理的思考,并对结论的合理性作出有说服力的说明。

3、能够表达解决简单分数除法实际问题的过程,并尝试解释所得的结果。

4、体验画线段图分析问题的直观性和用方程解决问题时思维的条理性,认识到许多分数除法问题可以用方程的方法来解决。

●分数除法,安排4课时。

第1课时,分数除以整数。教材首先设计了三组有关系的口算题。如:20÷5,20×。通过计算20÷5=4,20×=4,发现它们的结果相同,进而得出:甲数÷乙数=甲数×乙数的倒数。接着,设计了”把张大饼平均分成3份,每份是这张大饼的几分之几?“的问题,探索分数除以整数的计算方法。教材以学生交流的形式呈现了学生计算和验证的过程。一是利用图示和已有的分数知识,推导出÷3==,二是直接利用发现的规律得出:÷3=×=。得到:分数除以一个数等于分数乘这个数的倒数。然后,在”试一试“,设计了分数除以整数的三道题,让学生应用上面的方法尝试计算。教学时,要给学生充分的口算和讨论规律的时间,然后,启发学生利用以前学过的除法的意义,倒数的知识,分数乘法的知识解决问题,说明结果的正确性。把分数除以整数计算方法的学习过程,变成知识扩展、方法验证的过程。

第2课时,一个数除以分数。教材贯彻在解决问题中学习计算的设计思路,选择了把消毒液分装在每瓶能装升的小瓶中的典型事例,设计了两个问题。(1)把2升消毒液分装在每瓶能装升的小瓶中,需要几个瓶子?学习整数除以分数的除法;(2)把升消毒液分装在每瓶能装升的小瓶中,需要几个瓶子?学习分数除以分数的计算方法。两个问题都呈现了算术和用方程解的两种方法。这节课的内容,计算方法是上节课的进一步拓展,根据题意列算式和方程是重点。教学中,首先要帮助学生理解题意,明白把2升消毒液倒入每瓶能装升的小瓶中,需要几个瓶子,就是求2升中有几个升。再鼓励学生用自己的方法试着解答。χ=2和χ=,除根据等式的基本性质解方程外,还可以利用倒数的知识,即两边直接乘的倒数来解决。如果学生只用方程两边同时除以的方法解答,教师就提出兔博士的问题”χ=2还可以怎样解?“启发学生用倒数的知识列方程χ×=2×解答。”试一试“中安排了三道除数是分数的式题,要给学生充分的试算和交流的时间,重点说一说自己是怎样想的。教师还可以引导学生讨论一下分数除以整数、分数除以分数有什么共同点,进一步巩固分数除法的计算方法。

第3课时,简单的已知一个数的几分之几是多少,求这个数的简单问题。教材选择了同学们开联欢会布置会场的事情,呈现了布置会场的情境图和”用的红气球占总数的“、”红气球有28个“等文字信息,以及”一共用了多少个气球?“的问题。通过兔博士的话,提出”把气球的总数看作单位‘1’,画出线段图分析一下的要求“,并呈现了线段图。教学时,要在学生了解数学信息和知道了要解决的问题后,师生共同画线段图来分析数量关系,找到等量关系式,再鼓励学生自己试着解答,并检验计算的结果。交流时,重点让学生说说是怎样想的、怎样解答的,用自己的方法解释计算结果的正确性。”试一试“中,安排了一个数的几分之几是两数和,求这个数的问题,鼓励学生画线段图并解答。

第4课时,稍复杂的”已知一个数的几分之几是多少,求这个数“的问题。教材首先选择了玩具厂计划生产碰碰车的事例,用图文结合的方式呈现了已经完成计划的,还要生产190辆等信息和”这批碰碰车有多少辆?“的问题。通过兔博士的话,提示画线段图来分析数量关系并呈现了完整的线段图。这是一道需要两步计算的分数除法的实际问题,可找到两组等量关系,列出两个方程解答。(1)计划生产的辆数-已经生产的辆数=还要生产的辆数,方程为:χ-χ=190。(2)计划生产的辆数×还剩下的几分之几(1-)=还要生产的辆数,方程为:χ(1-)=190。教学时,要充分利用线段图指导、帮助学生分析问题中的数学信息和数量关系,找到题中给出的等量关系,再鼓励学生用列方程的方法解答。

分数混合运算的顺序与整数一样,本节课的混合运算主要是根据分数除法的特点,解决运算过程中的方法问题。教材设计了三道分数混合运算式题,(1)题是除加混合运算,运算中要先算除法,并把除法变成乘除数的倒数。(2)题是乘除混合运算。运算时,把除法转化为乘除数的倒数后,可以有不同的约分方法。第一,直接在三个分数上约分;第二,把三个分数相乘写成分子乘分子,分母乘分母的式子,再约分。(3)是带小括号的除减混合运算。教学中,由于两步混合运算的顺序学生已经非常熟悉,所以,让学生说一说运算顺序,自己计算。在交流学生计算方法和结果的同时,掌握分数两步混合运算方法。

分数除法教案人教版篇五

《数学课程标准》指出:学生是学习的主体,教师是组织者、引导者、合作者。因此,本节课以自主探究、小组合作的学习方式为主,采用情境教学法。先通过分月饼来导入新知,再通过实例验证,自己总结归纳出整数除以分数的计算方法,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、验证新知、应用新知、巩固和深化新知的目的。本节课的教学设计有如下特点:

1.注重对算理的探究。

探究算理是计算教学的根本。本节课的教学设计借助除法的意义和直观图形,让学生通过观察、比较与思考,发现整数除以整数(0除外)与整数除以分数知识间的内在联系,初步体会“除以一个不为零的数”与“乘这个数的倒数”之间的联系。这样不仅为学生创设了一个理解分数除法意义的机会,还教会了学生一种学习的`方法,即分数除法的意义可以联系整数除法的意义进行学习。

《数学课程标准》指出:自主探究、合作交流是数学学习的重要方式。本节课充分发挥学生的主体作用,先让学生独立思考,探究计算方法,再在独立探究的基础上,让学生小组合作讨论,探究不同的计算方法。这样不仅可以使学生经历独立探究、小组探究的过程,还可以使学生对“整数除以分数”的算理和算法的理解更深刻。

课前准备

教师准备 ppt课件

学生准备 圆形纸片

教学过程

有4张饼,平均每人得到了2张;还是同样的4张饼,平均每人得到了1张。你能猜出两次分别是几个人分的饼吗?你是怎么想的?

设计意图:以猜一猜的形式导入新课,生动地呈现例题,激发了学生学习的兴趣。

1.初步探究计算方法。

(1)课件出示教材57页上面例题。

(2)组织学生独立完成前两个小题,明确数量关系。

学生独立完成后汇报:

每2张一份,可分成几份?4÷2=2(份)

每1张一份,可分成几份?4÷1=4(份)

(3)组织学生讨论后,明确一个数除以分数的计算方法。

①引导学生动手操作,用圆形纸片代替饼,画一画,分一分,完成填空,并汇报自己的分法。

生1:我把每个圆都平均分成2份,一共可分成8份,可以用算式4÷=4×2=8(份)来表示。

生2:我把每个圆都平均分成3份,一共可分成12份,可以用算式4÷=4×3=12(份)来表示。

②观察算式,明确计算方法。

组织学生观察下面两个算式,交流自己的发现。

4÷=4×2=8 4÷=4×3=12

小结:一个数除以一个不为零的数,等于乘这个数的倒数。

设计意图:让学生充分利用学具,独立完成整数除法的计算,明确题中的数量关系;借助画一画、分一分的方法完成除法到乘法的转化。通过自主观察、小组讨论交流,真正理解一个数除以一个不为零的数,等于乘这个数的倒数的计算方法。

2.进一步巩固计算方法。

(1)出示教材57页中间例题的表格。

(2)引导学生观察表格前两行,讨论、交流表格中各项的意义和计算方法。

(3)组织学生填写表格。

(4)讨论:从表格“算式”一栏,你发现了什么?

(一个数除以一个不为零的数,等于乘这个数的倒数)

3.算一算,巩固计算方法。

(1)组织学生独立完成教材57页下面例题。

(2)汇报交流,说明计算时需要注意的事项。(能约分的要约分)

⊙巩固练习,提升反馈

完成教材58页3题,集体订正。

⊙课堂总结

通过本节课的学习,你有哪些收获?

⊙布置作业

教材58页1、2题。

板书设计

分数除法(二)(1)

4÷=8 4÷=12

分数除法教案人教版篇六

1.通过一组习题,学生能够理解分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中的一个因数,求另一个因数的运算。

2.通过学生试做例1,在理解算理的基础上总结出分数除以整数的计算法则,并能正确地进行计算。

3.培养学生分析能力、知识的迁移能力和语言表达能力。

正确的归纳出分数除以整数的计算法则,并能正确地进行计算。

1.投影,看乘法算式写出两道除法算式。

67=42

( )( )=( )

( )( )=( )

问:谁还记得整数除法的意义是什么?

板书:积 一个因数 另一个因数

师:这节课我们来学习分数除法的意义和计算法则。(板书课题)

首先研究分数除法的意义。(板书:意义)

1.分数除法的意义。

我们来看下面的问题。(投影出示)

(1)每人吃半块月饼,5人一共吃几块月饼?

问:谁会列式计算?

问:你是怎么想的?

(2)两块半月饼,平均分给5个人,每人分得多少月饼?

问:怎样列式计算呢?

问:没有学过分数除法,得数怎么得来的?

(3)两块半月饼,分给每人半块,可分给几个人?

问:谁会列式计算?

问:为什么这样列式,怎样算出的得数?

观察这三个算式,它们之间有什么联系?

同桌讨论,指名回答。

生:后两道除法是根据第一道乘法变化而来的,被除数相当于乘法中的积,除数是乘法中的一个因数,商是乘法中的另一个因数。

板书:积 一个因数 另一个因数

问:与整数除法对比一下,分数除法的意义是什么?

同桌互相说一说,指定2~3名学生说。

板书:已知两个因数的积与其中的一个因数,求另一个因数的运算。

师:同学们说得好极了!书上是怎么说的?打开书第30页看下面几行字,边读边画出来。

做一做:(同学们做在书上。投影订正。)

根据下面的乘法算式和分数除法的'意义,写出两个除法算式的得数。

问:你根据什么写出得数的?

师:分数除法中的商可以根据与它有关的乘法得出。但是不能每道除法都这么做,下面我们来研究分数除以整数的计算法则。(板书:法则)

2.分数除以整数的计算法则。

为什么这样列式?

(2)根据题意画出线段图。

生:把1米平均分成7份,取其中的6份。

(3)4人一组讨论:怎样计算出每段长多少米呢?试说一说算理。

师:有道理,结果也正确,还有别的方法吗?

师:这种方法也有道理,分数除以整数到底哪种方法好呢?同学们任选一种方法做下面一题。

学生做完后提问:你们用的哪种方法?有用第一种方法的吗?为什么不用?

师:看来第一种方法不能解决所有的分数除以整数的题。第二种方法是可以的。

(4)观察第二种方法,看哪儿没变,哪儿变了?是怎么变的?

生:被除数不变,除号变乘号,除数变成了它的倒数。

(5)试着说一说分数除以整数的计算法则。

板书:分数除以整数( )等于分数乘以这个整数的倒数。

想:为什么要空几个字的地方?为什么要加0除外三个字?(补充板书:0除外)

问:谁再来说一说分数除以整数的计算法则。同桌互相说一说。要真正理解。

计算法则是否会用呢?我们来自测一下。

投影做一做,学生做在书上,投影订正。

1.计算下面各题。(投影)

2.判断下面的计算过程是否正确。对的举,错的举,并说明理由。(投影出示)

(2)题为什么对?举错的说说你的想法?1的倒数是几?

(3)错在被除数变倒数了,而除数没有变。问:这道怎么改?

(4)错在除号没有变成乘号。怎么改?

(5)错在除数没有变成倒数。怎么改?

去计算。)

师:同学们审题非常认真,判断力很强。我们做题时就不应该出现上面的错误了。

下面我们计算几道题,看谁能正确运用计算法则。

3.计算:

4.想一想:如果a是一个自然数,

(3)用一个数检验上面的结果是否对。

这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?

课本32页第3,4,5,6题。

课堂教学设计说明

这节课有两部分内容。第一部分是分数除法的意义。在处理这部分内容时,首先出示一组整数乘除法的复习题,复习整数除法的意义,然后通过书中一组分数乘除法题,让学生观察三个算式之间的关系,再与整数一组题比较,发现道理完全一样,从而很自然得出分数除法的意义。第二部分内容是分数除以整数的计算法则,这是本节课的重点和难点。通过画图帮助学生理解题意,让学生讨论试做例1的方法,引导学生自己说出两种不同的思路,老师都加以肯定,然后让学生任选一种方法计算。

分数除法教案人教版篇七

苏霍姆林斯基曾说过:“引导学生借助已有的经验去获取知识,这是最高的教学技巧之所在。”本节课的教学通过让学生动手操作、自主探究、合作交流等方式,使学生经历“探究——发现——验证——修改”的过程。通过一系列的活动,使学生完成了知识的自我构建,同时也加深了对分数除以整数的意义的理解,符合学生的发展需要。

另外,本节课的教学设计还遵循学生的认知规律和年龄特点,对计算进行探究式教学。让学生以自主探究和合作交流的方式,在分析问题和解决问题的过程中体验成功的喜悦,不仅使学生获得了知识,发展了智力,还激发了学生学习数学的兴趣

教师准备 ppt课件、长方形包装纸

学生准备 长方形纸

师:同学们,我们学过整数除以整数(0除外),也知道了整数除法的意义。今天我们将学习分数除法。那么分数除法的意义是什么呢?它和整数除法的意义是否相同呢?下面就让我们带着疑问一起来探究一下几个小朋友分饼的问题。

请你们列出算式并计算。

(1)每人吃张饼,4个人共吃多少张饼?

(2)把2张饼平均分给4个人,每人分得多少张饼?

(3)有2张饼,每人分得张饼,可以分给几个人?

(引导学生观察上面的三道题,并说一说它们都是已知什么,求什么)

讨论:(3)题中涉及了分数除法,想一想,分数除法的意义和整数除法的意义相同吗?

总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

设计意图:通过对一组题的探究和对比,使学生发现分数除法的意义与整数除法的意义相同,这样新旧知识的迁移过渡,可以使学生对分数除法的意义理解起来更加容易。

(1)出示教材55页例题。

师:(出示一张长方形的包装纸)老师想用这张漂亮的包装纸把送给妈妈的`礼物包装起来,可是这张纸太大了,把它的平均分成2份就够了,每份是这张纸的几分之几呢?

(2)动手操作,分一分,涂一涂。

师:请大家拿出一张长方形纸,涂色表示出这张纸的。

(学生动手操作,教师巡视指导)

师:把一张长方形纸的平均分成2份,想一想,是把哪一部分平均分成了2份?其中的一份是多少呢?请大家用自己喜欢的颜色表示出来。

(学生活动,教师指导)

(3)观察发现。

师:通过画图,你发现了什么?能用一个算式表示出涂色的过程吗?

预设

(教师利用课件配合学生汇报)

生1:把平均分成2份,每份是2个小格,占这张纸的。

生2:里面有4个,平均分成2份,每份就是2个,是,即÷2=。

设计意图:通过涂一涂的活动,在教师的引导下,让学生列出除法算式,使学生进一步理解、感受分数除法的意义。

师:如果不看图,你会计算÷2吗?你能提出大胆的猜想吗?

预设

生:分母不变,被除数的分子除以整数得到的商作商的分子。

提出质疑,验证猜想,理解新知。

(1)尝试验证,发现问题。

师:科学的验证不是仅通过计算一两道题就能得出结论的,你们能不能自己设计一道分数除以整数(0除外)的计算题来验证刚才的猜想是否正确呢?

(学生汇报验证的结果)

师:为什么有些题目能很顺利地算出来,而有些题目却不能很快地算出准确的答案呢?(分数的分子不能被除数整除)

分数除法教案人教版篇八

1、掌握分数四则混合运算的运算顺序,能较熟练地进行计算。

2、理解整数四则混合运算定律在分数四则运算中同样适用,并能进行简便运算。

3、通过练习,培养计算能力及初步的逻辑思维能力。

1、重点是确定运算顺序再进行计算。

2、难点是明确混合运算的顺序。

1、复习整数混合运算的运算顺序

(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;

如果既有加减法又有乘除法,应该先算乘除法,后算加减法。

(2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。

(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面

的,最后算中括号外面的。

2、整数四则混合运算定律在分数四则运算中同样适用。

3、说出下面各题的运算顺序。

(1) 428+63÷9―17×5 (2) 1.8+1.5÷4―3×0.4

(3) 3.2÷[(1.6+0.7)×2.5] (4) [7+(5.78—3.12)]×(41.2―39)

1、阅读例4题目,明确已知条件及问题,尝试说说自己的解题思路。

a、可以从条件出发思考,根据彩带长8m ,每朵花用2m 彩带,可以先3

算出一共做了多少朵花。

b、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。

2、列出综合算式,想一想它的运算顺序,再独立计算。

______________________________________________________________

3、独立完成p34 “做一做”第1、2题

4、明确整数四则混合运算定律在分数四则运算中同样适用,正确复述四则混合运算定律。

独立完成练习九第1题,组长检查核对,提出质疑。

巩固训练:完成练习九第2—6题;拓展提高:练习九第7---10题。

(1)第2题:要注意6楼楼板到地面的高度实际上只有5层楼的高度。 (2)第7题:“60瓦”与计算无关。 (3)第10题:最后得数与原数相同,原因是231、的`倒数与的积正好是1。 342

回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(把你个性化的解答或创新思路写出来吧!)

分数除法教案人教版篇九

1、运用所学知识解决一些生活中的实际问题。

2、加强列方程的思维训练。

3、培养学生分析问题解决问题的能力。

:备注

活动一:复习与准备

1、爸爸的体重75千克,小明的体重是爸爸的7/15。

(1)、小明的体重是多少千克?

(2)、小明体内水份的'质量占小明体重的4/5,小明体内有多少千克水份?

(3)让学生说出数量关系并列式计算

活动二:出示例1

1、与复习题比较有什么不同?

2、要求小明的体重应该知道什么条件?为什么?

3、以知小明体内有水份28千克,要求小明的体重,需用到哪个数量关系?

4、学生自己列式计算

5、与复习题比较有什么相同点和不同点?你发现了什么?

小结:(略)

1、要求学生自己做第二问

(1)、要求画图分析

(2)、与第一问比有什么不同?

(3)、根据什么等量关系列方程?

小结:

活动三:巩固练习

1、38页做一做

2、40页1、2

板书设计

分数除法教案人教版篇十

1理解分数除法的意义,掌握分数除法的计算方法。

2进一步培养学生抽象概括的能力和计算能力。3进一步渗透转化的数学思想。教学重点理解分数除法的意义,掌握分数除以整数的计算方法。教学难点培养数学能力,渗透转化思想。课型讲练课教法讨论、讲解教具投影

板书设计1分数除以整数例1:把一根长4/5米的铁丝,截成相等的两段,每段长几米?解:4/52 = 0.82 = 0.4(米)4/52 = 42/5 = 0.4(米) 4/52 = 4/51/2 = 0.4(米) 课后小结内容设计合理,结构紧凑,一步一步让学生体会分数除以整数,可以有多种方法解答,只有把除以整数改写成乘整数的倒数,这样才是最简便的.,学会了把新知改变成旧知来解决问题的这种学习方法,拓展了思路,活跃了思维。 教学过程意图媒体教师活动学生活动

明确分数除法意义投影 板书 投影 小结 板书1列式计算:一袋洗衣粉重1/2千克,4袋洗衣粉重多少千克?1/24 或41/22改编并列式:把上题改编成两道除法应用题① 4袋洗衣粉重2千克, 一袋洗衣粉重多少千克?2 4 = 1/2(千克)②一袋洗衣粉重1/2千克, 几袋洗衣粉重2千克?21/2 = 4(千克)3讨论:结合以上三题,请同学们思考分数除法的意义。通过以上数学活动,同学们已经明确了分数除法与整数除法的意义相同,是已知两个因数的与其中的一个因数,求另一个因数的运算。那么分数除法又怎样计算呢?今天我们就来研究这个问题。课题:分数除法指名口答 求4个1/2是多少。 生编题,师板书。 根据上题数量关系说出结果

学习分数除法的计算方法板书 激发兴趣 汇报 板书

板书 1出示例1:把一根长4/5米的铁丝,截成相等的两段,每段长几米?理解4/5米的意义 ?米 ?米

4/5米通过以上活动,我们进一步理解了题意,你能否根据题意把它转化成已学过的知识进行计算?解:①4/52 = 0.82 = 0.4(米)②4/52 = 42/5 = 0.4(米) ③4/52 = 4/51/2 = 0.4(米)重点说明③把4/5米平均分成2份,求每份是多少,就是求4/5米的1/2是多少米?列式是4/51/2。2尝试计算方法:三选一计算3/85 1/32 5/93①3/85 = 3/81/5 = 3/403/85 = 35/8 = 0.6/8 = 3/403/85 = 0.3755 = 0.075②1/32 = 1/31/2 = 1/6 1/32 = 12/3 = 0.5/3 = 1/6③5/93 = 5/91/5 = 5/27哪种方法最好,为什么?3用这种最简便方法计算:7/1314

5/9104归纳计算法则:①口述做上述两题的方法②除以10 改写成乘1/10。③1/10是10 的倒数。分数除以整数(0除外),等于分数乘这个整数的倒数。审题列式 理解意义

讨论方法

选择自己喜欢的方法计算其中一题 讨论③最适用 小组讨论 为什么要0除外

投影 1计算:14/157 4/53 4/1182填空:2/35 = 2/3( )3/79 = 3/7( )5/610 = 5/6( )19/208 = 19/20( )3/116 = 3/11○1/65/66 = 5/6○( )12/173 = ( )○( )3课后讨论:2/73你会做,32/7你行吗?认真计算

    版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。

    本文地址:https://www.nuenian.com/fanwen/qitafanwen/88346822a061f0f6b74bf2c5bb758558.html

相关内容

热门阅读
随机推荐